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Abstract: It is shown that the application of the Ampére and Lorentz force laws to a closed current in a metallic circuit results in two dif-
ferent mechanical force distributions around the circuit. In addition to the transverse forces, which both laws predict, the Ampere elec-
trodynamics requires a set of longitudinal forces that subject the conductor to tension. These longitudinal forces explain electromagnet-
ic jet propulsion and the recoil mechanism in a railgun. Pulse current experiments are described in which Ampeére tension shattered solid
aluminum wires. Electrons moving through the metal lattice are the basic current-elements of the Lorentz force theory. But Ampere
assumed his current-elements to be infinitely divisible. With the help of computer-aided analysis and experiment, it is demonstrated that
the amperian current-element must also be of finite size and involve at least one lattice ion in addition to the conduction electron.
Calculations with Ampere’s formula have been found to give reasonable results when the atom, or unit atomic cell, is taken to be the
smallest possible current-element. Some technological consequences of Ampere tension are discussed briefly with regard to pulse currents
in normal conductors and steady currents in superconductors. The use of large macroscopic current-elements of unit length-to-width ratio
gives rough approximations to the Ampére tension. The accuracy of the calculations can be improved by resolving the conductor into a

number of parallel filaments, each filament being subdivided into cubic current-elements.

INTRODUCTION

A. Historical

In the 160 years which have elapsed since Oersted’s discov-
ery of electromagnetism,! Ampeére’s force law? reigned
supremely during the first 80 years. Maxwell3 said:

It is perfect in form, and unassailable in accuracy, and
it is summed up in a formula from which all the phe-
nomena may be deduced, and which must always
remain the cardinal formula of electrodynamics.

This statement of Maxwell’s has lost little of its validity
during the past 100 years provided the term phenomena is
restricted to mean electric-current phenomena in metallic
conductors. Lorentz? found it necessary to substitute the
transverse force known by his name for amperian repulsions
and attractions, primarily to explain the motion of electrons
in vacuum. He recognized that this might cause conflict
with Newton’s third law of motion. By now generations of
physicists have unhesitatingly assumed that the magnetic
force acting on a moving electron in vacuum remains
unchanged when this electron travels through the metal lat-
tice.

Ampere’s force law formed the basis of FE. Neumann’s
mathematical theory of electromagnetic induction.> The
resulting Ampére-Neumann electrodynamics, as taught in
the nineteenth century, embraced much indirect experi-
mental evidence of the existence of mechanical forces of
electromagnetic origin which acted parallel to the current
streamlines. The literature of the time also contains two
direct demonstrations of longitudinal forces.6.7 The author’s
discovery of electromagnetic jet propulsion8 and Hering’s?
liquid metal pumps represent further demonstrations of lon-
gitudinal Ampere forces.

B. The Force Laws

In the years from 1820 to 1825 Ampere carried out many
experiments concerning the mechanical forces exerted
between current-carrying metallic conductors. Eventually he
singled out four null experiments,? that is, experiments in

which the forces balanced each other, from which he
deduced his fundamental force law for the interaction AF,,, ,
of two current-elements i,, dm and i,, dn. Of the many forms
in which his formula may be written, perhaps the most use-
ful is

AF,, = -iyyiy (dm - dnfr2, ) (2 cose -3 cosacosB) (1)

where dm and dn are the lengths of the two elements and
I'mn is the distance between their center points. Figure 1
depicts the three angles of Ampere’s force law. The inclina-
tion of the current-element vectors is defined by ¢, and o
and f are the inclinations of the current elements to the dis-
tance vector r,, ,. As all three angles appear in cosines, and
since the cosine is the same for positive and negative angles,
it does not matter in which direction the vectors are turned
to bring them into coincidence. Furthermore, of the two
possible orientations of the distance vector, either will give
the same interaction force. It helps to imagine that the direc-
tional properties of the current-element are vested in the ele-
ment length and not in the current.

Equation (1) has been treated as the defining equation of
fundamental electromagnetic units. If the currents are
inserted in absolute ampere (1 ab-amp = 10 A), the force is
given in dyne.

The force law for two current-elements which has been
used during the past 80 years was first proposed in 1845 by
Grassmann, 19 who also invented the vector calculus. It is an
unsymmetrical law and therefore has to be stated by two

- g = P == N
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Figure 1. Angles of Ampere’s force law.
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Figure 2. Square circuit with one free side.

equations, one for the force AF,, on the element dm, and the
other for the force AF,, on the element dn. In vector form,
with the previously employed notation, these two equations
may be written

AF,y, = (iyyin/12,, ) dim x (dn x 1)
AFy = (ipgi/ 12y, ) it X (dm x T,) ©)

where the direction of unit distance vector f, is along the
line connecting the elements and pointing toward the ele-
ment at which the force is being determined.

In terms of modern field theory, the total force which an
electric charge e experiences in the presence, at its location,
of an electric E-field and a magnetic B-field is

F= e(l:?+v_)x§3 3)

where v is the relative velocity between the charge and the
source of the B-field. The second term of (3) is generally
called the Lorentz force and, with the help of the Biot-Savart
law, it can easily be shown to be identical to the Grassmann
interaction forces of (2).

The original papers and books on the Ampere-Neumann
electrodynamics do not appear to have been translated into
English. More than anything else, this explains the uncer-
tainty which has arisen as to the measure of agreement
between the Ampere and Lorentz forces on complete circuits
and circuit portions. Many textbooks on electromagnetism
written in the last 30 years do not mention the old electro-
dynamics. Some wrongly describe (2) as Ampere’s force law.
Most books today refer to an Ampere law which relates elec-
tric current to its magnetic field. It has nothing to do with
Ampere’s theory, which was based on action-at-a-distance
and not fields.

In this confusion it is sometimes held that the two laws
give mathematically identical results when applied to closed
circuits. This is only a half-truth. They do agree on the vec-
tor sum reaction force between closed circuits, but disagree
on the force distribution around the circuits. According to
both laws the force on an isolated current-element due to a
separate closed current is perpendicular to the element. The
22 ISSUE 63,
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sharpest disagreement arises with regard to the force distri-
bution around an isolated arbitrarily shaped circuit. The
Lorentz forces are then still everywhere perpendicular to the
circuit while the Ampeére law now permits and requires the
existence of longitudinal force components which give rise
to the experimental phenomena of Ampére tension, electro-
magnetic jets,8 and the recoil of railgun accelerators.!!
Because of integration singularities, the quantitative evalua-
tion of longitudinal Ampere forces is entirely dependent on
computer-aided finite current-element analysis. Therefore
these forces could not have been fully appreciated prior to,
say, 1960.

This paper presents a quantitative analysis of electromag-
netically generated tension in straight conductors according
to Ampere’s empirical law. It goes on to discuss the techno-
logical consequences which should result from this tension.
Later sections describe an experimental demonstration of
the action of Ampeére tension in aluminum wires.

AMPERE TENSION

When two current-elements lie on the same straight stream-
line we have in (1) cos ¢ = cos o = cos § = 1 and the mutual
force becomes

AF,y, = iy, (dm - dn/r?,, ). 4

Modeling his theory on Newtonian gravitation, Ampere
assumed the force between two current-elements to act
along the line connecting them. Then he arranged his for-
mula (1) so that positive interaction forces would stand for
repulsion and negative forces for attraction. Equation (4)
cannot become negative and therefore invariably describes
repulsion. In this way Ampere’s electrodynamics leads to the
remarkable prediction that long straight current-carrying
metallic conductors should find themselves in tension
unless the return circuit somehow cancels the tensile action.

Ampere deduced his law from a host of experimental data
in the same way Newton arrived at the law of gravitation
from astronomical observations. Ampere’s summarizing
paper,? entitled “Mathematical Theory of Electrodynamics
Uniquely Deduced from Experiments,” was republished as
recently as 1958 and goes to great length to demonstrate the
method of deduction. Therefore, Ampere claimed his four
null experiments proved the existence of the longitudinal
forces revealed by (4). For a subsequent confirmation of this
claim he devised with de LaRive® an additional experiment
which directly demonstrates the repulsion between conduc-
tor portions lying on the same straight line.

Accepting this position, there remains much to be done in
the way of calculating the tensile forces in practical conduc-
tor arrangements and explaining why they remained hidden
to generations of physicists who were not familiar with the
Ampeére-Neumann electrodynamics. Let us begin by consid-
ering a single filament of conductor elements. Since the cur-
rents in Ampere’s law are of finite magnitude, this filament
has to have a finite cross-sectional area and not be merely a
line. Near the end of the twentieth century it would be
absurd to pretend, as one might have at Ampeére’s time, that
current-elements may be infinitely thin and infinitely short.
The atomicity of conductor metals is likely to set definite
limits to the subdivision of what must be considered the
fundamental “particles” of Ampere’s electrodynamics. In the
absence of any other proposal we will assume that the atom,



or unit lattice cell containing one atom, is the ultimate cur-
rent-element. In this case the current-element would be
about as wide as it is long. This aspect will be further dis-
cussed as the analysis of particular circuits proceeds.

An infinitely long straight conductor could be and has
been treated as a closed circuit. Yet it would be futile to ana-
lyze it because, even with finite elements, the Ampere for-
mula would give infinite tension at every point along this
conductor. To prove anything about Ampére tension the
investigation has to concentrate on closed metallic circuits
of finite size. In a straight portion of a finite circuit the ele-
mental repulsion indicated by (4) should create tensile stress.
Could this stress be annulled by interactions with the
remainder of the circuit? No generally valid answer can be
given. However, if the tension can be shown to exist in a par-
ticular case there is reason to believe that it will also be
found in other circuit geometries.

Consider the particular case illustrated by Figure 2 in
which a square circuit carries a steady current i and is ade-
quately cooled to ensure constant temperatures. Sides BC,
CD, and AD of the circuit are firmly embedded in a dielectric
structure which is rigidly anchored to the laboratory frame.
AB is a free length of wire resting against a wall meant to
absorb the lateral force on AB.

Let T,/i2 be the specific tension in interatomic bonds
across plane X intersecting the wire AB. As further shown by
Figure 2, each side of the square is assumed to be divided
into z equal-length elements thin enough so that the con-
ductor may be treated as a single filament.

A major contribution to T, will come from the repulsion
exerted by the general elements m in AX on the general ele-
ments n in XB. Since (1) is independent of the unit of length

we may choose this to be
dm = dn = 1 unit of length. ®)

With the labeling of current-elements indicated on Figure 2,
the distance between the two general elements may be written

for interactions between AD and AX. However, the repulsion
between BC and AX, as well as between AD and XB, adds to
T,. This is due to AX and XB having no column strength.
Hence by resolving the latter repulsions along AB we obtain
the second contribution to the specific tension across plane
X, that is,

T, /i* = L Z (3/rp.m) cOS™ @, sin @y,
nexs+1 p=1

8)
+ ki‘ L (3/r} m) cos® ay, sin a,,
m=1q=1
where
hn = (1-0.5)2 + (p - 0.5)2 )
[m=(z-m+0.5)2+(q-0.5)?2 (10)
cos oy, =(n- 0.5)/rp,n ;sina,, =@ - O.S)/rp/n (11)
cosa,,=(z-m+ 0.5)/rq/m ;sinay,,=(q- O.S)/rq,m (12)

The 0.5 terms arise from the fact that the position of the cur-
rent-element is a point halfway along its length.

The third contribution to T, derives from interactions
between AB and CD. The angle function for this side pair has
everywhere cos € = -1 and cos f = -cos a. Furthermore, since a
varies from 45 to 135 deg, 2 cos ¢ - 3 cos o cos f = -2 + 3 cos2 o
This is never positive and then, because of the negative sign
of (1), all interactions are again repulsions.

It is convenient to split CD by the plane X with general
elements u on one side and v on the other. Symmetry
ensures that every elemental repulsion with an upward lon-
gitudinal component is offset by a symmetrical interaction
with a corresponding downward component. Therefore
actions of XC on XB do not contribute to T,. The same is
true for actions of DX on AX. However, tensile forces will be

© | o

The specific tension contribution by the m - n ele-
ment combination is

T/t = i Z fn - myt -

mEl n=x+l

Typn =1 - M.

(7) .1

this will be a maximum when x = z/2. 6}

Next we consider the interactions of current-ele- |
ments in AB with other elements in sides BC and
AD. The interactions in question are all repulsions.
This is due to the fact that the angle-function
(2 cos ¢ - 3 cos a cos PB) is negative for all rele-
vant element combinations because cos ¢ = 0 and
cos a cos f = cos a sin a with 0 < a < 90°. Now .
we have to make some assumption about the
mechanical behavior of the unsupported wire AB.
It is very thin compared to its length and it will
therefore have little strength as a strut, while being
quite strong in resisting tension. We therefore treat
it like an ideal string, recognizing that this must
involve some approximation. Interactions
between BC and BX are taken up by the tensile

)
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Figure 3. Specific tension in free side of square circuit.
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Table 1. Computer evaluation of (7) for zvarying from 20 to 200 and x = z/2.

V4 T]/iz

20 3.188
30 3.593
40 3.880
50 4.103
60 4.285
70 4.396
80 4.573
90 4.691
100 4.796
110 4.891
120 4.978
130 5.058
140 5.133
150 5.202
160 5.266
170 5.327
180 5.384
190 5.438

XB. They contribute

Ts/i? = i Z (-1/r3, ) (-2 4 3 cos? &) cos &,
m=)] veXx+1]
(13)
< X
+ S UL (2+3 cos? a,,) cos @,
n=x+| u=|\
where
oy = (v - )2 + 22 (14)
hu=m-w?+ 22 (15)
cos a, = (v-m)/ry, , (16)
cos ay, = (n-u)/r,, . (17)

The total specific tension in the wire AB may then be
obtained by adding (7), (8), and (13):

T,/i2 = T1/i2 + T,/i2 + T5/i2. (18)

Figure 3 is a plot of the three tension components and their
sum for z = 1,000. In the middle of side AB the tension is
seen to be largely due to the repulsion of in-line current-ele-
ments. Near the ends of the side it is mostly produced by
actions across the corners A and B. Side CD makes only a
small contribution to the tension in AB.

It can easily be shown that the computed tension increas-
es with z. At first sight this appears to be an unsatisfactory
outcome of the Ampere electrodynamics. However, this dif-
ficulty can be overcome by making certain assumptions
about the length-to-width ratio of the current-element. As a
first step we calculate the most important tension contribu-
tion given by (7) across the mid-plane at x = z/2. Table 1 lists
the results for z varying from 20 to 200. A regression analy-
sis performed on this data revealed a very close fit to

T,/i2=0.19 + 1n z. (19)

It can be shown that the specific tension contributions T,/i2
and T3/i2 obey similar logarithmic laws. Hence T,/i% will also
be a logarithmic function of z. For z = 1,000, (19) gives the
specific tension of 7.098 as compared to 7.099 obtained by
finite element analysis. This extraordinarily good agreement
gives us confidence to extrapolate (19) to much larger values
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of z which otherwise would have to be ascertained by a large
computing expenditure.

Equation (19) tends to infinity with z. Hence if the cur-
rent-element is assumed to be infinitely divisible, the
Ampere electrodynamics becomes absurd. The same is true
for an electrodynamics based on the Lorentz force law (2).
We really have no choice but to accept finite size elements.
Could the lower element size limit be determined by the dis-
tance between neighboring atoms? In metal lattices this
would be of the order of 107 cm. It would amount to 10°
current-elements in AB of Figure 2, if the latter side is 100 cm
long. Equation (19) then gives a specific tension of 20.91,
which is only three times the tension obtained for z = 1,000.
It is not an unreasonably large number and therefore lends
some support to the idea that the atomic cell is the extent of
the basic current-element.

It appears plausible that any reduction in current-element
length from macroscopic to microscopic dimensions should
be accompanied by a similar reduction in the cross-section-
al dimension of the element. In other words, the specific
tension of 20.91 probably applies to a conductor of 107 cm
in diameter and 1 m long. For conductors of larger diameter,
the atomic element concept requires the consideration of a
bunch of parallel filaments, each being essentially a string of
atoms.

What will be the tension in two adjacent strings of atoms
which share the current of one absolute ampere? To obtain
an answer consider the two square-section filaments of
Figure 4. They have been subdivided into four portions a, b,
¢, and d. Each portion consists of z/2 cubic current-elements
with their vectors all pointing in the same direction. The
shape of a cube has been chosen for the convenience with
which a solid conductor may be subdivided into cubic cells,
and not because this is the atomic cell shape. Let us now
determine the specific tension T,/i2 across the midplane of
the filament combination when each filament carries half
the total current, or i/2. The tensile force due to the interac-
tion of portions a and b can be derived directly from (7) and
(19). An equal component will arise from the interaction of
portions ¢ and d. Let these two components be T, , and T, 4,
then

Toyp=Tcq=(1/4)(0.19 + 1n 2)i2. (20)

For the calculation of components T,,; and T, which,
because of symmetry, are equal to each other, we find from
Figure 4 that

in=m+n-1)2+1 (21)
cose=1 (22)
cosa=cosp=(m+n-1/r,,. (23)

Applying Ampere’s force law to portions a and d of the fila-
ment pair of Figure 4 and resolving the elemental interac-
tion force in the direction of the current, we obtain

Toa=Tep = (D S 3 (1rkn)
=1 =l (24)
2 cos e- 3 cos a cos ) cos a.
Solving the simultaneous equations (21)-(24) by computer,
and applying regression analysis to the results, revealed the
logarithmic relationship

Toali2 =T, p/i2 = (1/4) (-1.64 + 1n 2). (25)



Hence the tension T; across the midplane of the filament
combination is

Ty =2T,p + 2T, 4= (-0.73 + 1n 2)i2 (26)
which is smaller than the force given by (19). This result
demonstrates that the amperian tension will be reduced if
the current divides between two adjacent filaments. It is an
important effect which will henceforth be called “longitudi-
nal force dilution.” Adding two more filaments to the
arrangement of Figure 4, to make up a square-section conduc-
tor, would result in a specific tensile force of (-1.23 + 1n z)
which is distributed over the four filaments and thereby
dilutes the tension even further.

In summary it has been shown that, for the circuit of
Figure 2, Ampere’s force law predicts the existence of tension
in a current-carrying conductor, and that this tension is not
predicted by the Lorentz force law (2). In the example of the
square circuit a current of, say, 6,000 A = 600 ab-amp would
create a tensile force of 2,385 g, if z is taken to be 1,000. For
an element length-to-diameter ratio of 1, this would be the
tension in a 1 mm diameter wire of 100 cm straight length.
The calculated tension would be sufficient to break an alu-
minum wire heated to 500°C, and it can therefore be verified
or denied by experiment. There is good reason to believe
that the same kind of finite element analysis would also
reveal tension in rectangular and other circuit geometries. In
reducing the current-element size from macroscopic to
microscopic dimensions, the tension in an individual cur-
rent filament appears to increase by as much as a factor of
three. However, when the current is distributed over a num-
ber of closely bunched adjacent filaments, longitudinal force
dilution takes place and this counteracts the apparent ten-
sion increase with element-size reduction. Elsewherell it has
been proved by measurement that macroscopic current-ele-
ments of the shape of cubes give results which are in good
agreement with experiment.

MACROSCOPIC CURRENT-ELEMENT ANALYSIS

During the 80 years from 1820 to 1900, when the Ampeére
law was in wide use, current-elements were treated as being
infinitely divisible. The result was a continuum theory
which led to singularities in the integration of tensile forces
because r, , across the interface of conductor portions
approached zero. This probably explains why so little was
written in the nineteenth century about amperian tension in
electric conductors.

Large current-elements of a cross-section equal to the
whole conductor section have often been successfully
employed to calculate the reaction forces between two com-
plete circuits which were separated by at least 10 current-ele-
ment lengths. It therefore seemed worthwhile to investigate
if single filament representations of practical conductors can
be helpful in estimating the magnitude of Ampére tension.

To do this a 100 x 40 cm rectangular circuit, made up of
0.25-in diameter copper rod and two liquid mercury links,
was set up in a vertical plane. As shown in Figure 5, the
uppermost side and 3 centimeters of each vertical leg were
cut off and reconnected with liquid mercury contained in
dielectric cups attached to the bottom portion of the circuit.
The liquid metal gaps were less than 1 millimeter long. The
electromagnetic lift force F; on the upper portion of the cir-
cuit was measured with a beam balance. As the results plot-

ted on Figure 5 indicate, the reaction force was found to be
proportional to the square of the current, giving a specific
force of F;/i2 = 10.30. According to accepted pinch force the-
ory,12 the liquid mercury is responsible for a specific upward
thrust of 1.00. Hence Ampere’s force law should account for
9.30 of the specific force.

In the macroscopic current-element analysis of the lift
force, the circuit was modeled as a single filament of 1 cen-
timeter long elements, making perfect right-angled joints at
each corner. Apart from computing the Ampere lift force,
consisting partly of longitudinal components in the vertical
legs and partly of transverse forces on the horizontal branch,
the Lorentz force on the horizontal conductor was also com-
puted by applying (2) to the 1 centimeter long current-ele-
ments. The results were as follows.

Ampere: F;/i2 = 11.20 (47 percent longitudinal)
Lorentz: F)/i2 = 11.24 (all transverse)
Experiment: F;/i2 = 9.30.

Hence the single filament representation with current-ele-
ments of a length even longer than the conductor diameter

100 ¢cm
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Figure 6. Cubic element subdivision of linear conductor.
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gave a rough guide to the magnitude of the reaction forces
between parts of the same circuit. In the chosen example the
Ampere force appeared to overestimate the force by 20%.
Part of this discrepancy may have been due to experimental
ITOTS.

The other interesting revelation was that, for the same ele-
ment size, both Ampere’s and the Lorentz force theory pre-
dicted almost identical tension forces. However in Ampere’s
electrodynamics 47% of the tension was due to longitudinal
forces, while the Lorentz force was of course entirely a trans-
verse force which produced tension indirectly. This coinci-
dence and the prominence given to rectangular circuits in
the past has no doubt contributed to the belief that Ampere’s
force law is not needed.

How should one proceed from here? The founders of the
Ampere-Neumann electrodynamics were masters of analysis,
but obviously did not succeed in finding an analytical solu-
tion for the directly induced conductor tension. Computer-
aided finite element analysis was not available to scientists
of the nineteenth and the first half of the twentieth century.
It therefore is deemed desirable to pursue the latter tech-
nique a little further. The finite current-element has to be of
a definite shape and the cube lies close at hand.

Consider an a x a square-section conductor of straight
length I. If I >> a, the important midplane tension is then
largely independent of any further increase in length. In the
case of Figure 3, where I/a = z = 1,000, over 80% of the mid-
plane tension is being contributed by the repulsion of in-line
elements. Therefore, when dealing with very long straight
conductors, we may ignore the return circuit and remember
that this will underestimate the Ampeére tension.

For z = 10,000 the specific midplane tension from (19)
comes to 9.40. This would apply, for example, to a 100 m
long conductor of one square-centimeter cross-section.
Assuming the current to be 1,000 A = 100 ab-amp, the single
filament model predicts a tension of only 96 g, or 0.096
kg/cm? tensile stress. It would produce a negligible amount
of strain in spite of the high continuous current density of
1000 A/cm2. It is therefore not surprising that Ampére ten-
sion has gone unnoticed in ordinary wires and cables used
for the transmission and distribution of electrical energy.

The tensile stress will become more severe in fully loaded
cryogenically cooled conductors. For instance, an aluminum

ductor this would give rise to 960 kg/cm? tensile stress which
not only produces noticeable strain but would very likely
change the superconducting properties of the rod, known to
be strain sensitive.

The single filament representation of the linear conductor
is the crudest model one can use. Finer subdivision of the
conducting matter into smaller cubes should result in better
approximations to the specific tension. Therefore, let every
element of Figure 6(a) be subdivided into eight smaller
cubes, as shown by (b). This multiplies the computational
work by at least a factor of 64. Angles o and f are then no
longer zero for all relevant current-element combinations
and (24) has to be used in addition to (7). To obtain a quan-
titative indication of the force dilution resulting from fila-
ment subdivision we analyze a relatively short conductor of
2 m length and 1 cm? cross-section. The return circuit would
make a significant contribution to the maximum tension in
this short conductor but we will not compute this. The mid-
plane tension due only to the straight portion was found to be

single filament, Figure 6(a): T;/i2 = 5.49
four filaments, Figure 6(b): T,/i2 = 4.71
nine filaments, Figure 6(c): T;/i2 = 4.55.

This example demonstrates that the computed specific
Ampeére tension converges quite rapidly as the number of
parallel filaments increases. Hence only a modest degree of
subdivision will give good approximations. Although the
ultimate current-element of the Ampére-Neumann electro-
dynamics is likely to be of atomic size, the usefulness of cal-
culations involving macroscopic current-elements has now
been demonstrated.

PRACTICAL CONSEQUENCES OF AMPERIAN TENSION
A. Normal Conductors

It has been shown that the specific Ampeére tension can
approach a value of ten. For most practical purposes it would

seem appropriate to assume that this tension will be at least
T =~ 5i2 (dyn) (27)

with i expressed in absolute ampere. Using MKS units with
the current I in ampere, this approximation becomes

conductor of the above dimensions held at the temperature T'=12/(20 x 981,000) (kg) - 28)
of liquid nitrogen could possi-
bly carry 10,000 A continu- g
ously, when it would be sub- 600 kgsem’ ,
ject to 9.6 kg/cm?2 tensile 5000 AslDem
stress. Even then the strain is s00
quite modest. 4000

Ampere tension is likely to | § a00 § ’
be of critical importance in | £ * 30004
super-conductors. Type II | * aag e i As Seme
superconducting  filaments 1—.; g 2000
embedded in a copper matrix | € o, | '
and cooled with superfluid N
liquid helium can support cur- 100 - 10001 2

L. e A | cm

rent densities of the order of - —
190,000 A/cm2 over the com- oo . 0 : - 50 xArem?
bined copper and supercon- a a0 100 kA Corrent density
ductor area. In the 100 m long Current

one square-centimeter con-
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Figure 7. Plot of approximation (28).

Figure 8. Conductor tensile stress according to (29).



Approximation (28) has been plotted in Figure 7. For cur-
rents below 10 KA the tension is seen to be less than 5 kg.
Few practical circuits carry more than 10 kA continuously.
Furthermore, for steady currents of this order the size of the
cross-sectional areas of copper and aluminum conductors are
likely to vary between 50 and 100 cm?, resulting in stresses
of less than 100 gm/cm2. They are negligible compared to
thermally induced stresses created by Joule heating and
other stresses caused by conductor supports.

Substantially higher currents may flow for a short time
when power circuits are accidentally short-circuited. Fault
currents of this nature may be as high as 50 KA(RMS) and
under exceptional circumstances they may reach 100 KA.
This means that, with the conservative approximations (27)
and (28), power conductors could experience tensile impuls-
es of the order of 100 to 500 kg lasting for a few cycles of the
power frequency, until the fault current is interrupted by cir-
cuit breakers. It will be realized that ac short-circuit currents
produce tension corresponding to the RMS current ampli-
tude pulsating unidirectionally at twice the power frequen-
cy. The impulses appear strong enough to damage weak links
such as conductor joints.

Many pulse current events should be dominated by longi-
tudinal forces. Examples are the rupturing of fuses and the
explosion of wires. Of particular interest, in this respect, is
an observation made during many exploding wire experi-
ments.13 If capacitors are discharged through thin wires of a
few inches length, the current will at first rise to a maximum
and then decay to zero without discharging all the energy
stored in the capacitors. After this interruption and dwell
lasting for several microseconds, the current will start to flow
again and completely discharge the capacitors. Photographic
evidence proved that during the dwell period the wire is bro-
ken up in a number of pieces or liquid drops. Reignition of
the explosion is brought about by an arc forming in the sur-
rounding gas or vapor which envelops the wire pieces and
usually evaporates all the metal. Currents in exploding wire
experiments may reach 50 kA, which should result in tensile
forces up to 100 kg.

It seems likely that the unexpected current pause
observed in exploding wire experiments—which has never
been satisfactorily explained—is the result of Ampeére ten-
sion. The following sequence of events may be visualized.
First the wire ruptures at some weak point as the tempera-
ture approaches the melting point. A gas arc immediately
bridges the gap and restores tension. Further breaks develop
which are all bridged by arcs. Every arc increases the voltage
drop along the wire until this equals the applied voltage and
extinguishes the current. Reignition of the discharge is
another process not connected with Ampeére tension. It
could be caused by arc plasma diffusion which ultimately
permits the striking of an all enveloping arc of low voltage
drop.

B. Superconductors
Let A (cm?2) be the cross-sectional area of a conductor carry-
ing a uniformly distributed current density j (A/cm?2). It then
follows from (28) that the tensile stress over the conductor
section is given by

o =T/A = j2 A/(20 x 981,000) (kg/cm?2). (29)

This stress has been plotted in Figure 8 for A =1, 5, and 10

cm? and current densities up to 100 kA/cm?2. Magnetic flux
penetrates type II superconductors and, at least on a macro-
scopic scale, the current distributes itself approximately uni-
formly over the conductor cross-section. Hence, Figure 8
should apply to very long type II superconductors. If con-
ductors of 10 square-centimeter cross-section could be
loaded to 100 kA/cmZ2, the amperian tensile stress would be
formidable.

Since the advent of the CBS quantum theory of supercon-
ductivity it appears that quenching of the superconducting
state at the critical current level is due to charge transport.
However, for many years it was believed that the critical cur-
rent i, which a straight type I superconductor could support,
was the current which established the critical field H, at the
surface of the conductor. This was known as Silsbee’s rule,
and it was largely borne out by experiment. If r is the radius
of the straight conductor, then the Silsbee rule states, in
EMU

H, = 2ir. (30)

Let the Ampere stress for this critical condition be o, then
from (27) and (30) it follows that

o, = T/A = 5i.7(mur2) = 1.25xH.%. (31)

This last condition implies that the superconductor quench-
es at some critical tensile stress and the critical current as
well as the critical field are measures of this stress. It is well-
known that mechanical strain, resulting from stress, changes
the critical current and the critical field strength. The ques-
tion now arises, to what extent the critical parameters are
affected by Ampere tension?

Experience has revealed that superconductors of 1 square-
centimeter or more in cross-section will not sustain the cur-
rent densities achievable with thin wires. The engineering

_ Wave pottern

Trough Sechion
with Liguid Mercury

|72 inER Suirs CoOpder

IF2 inch square copper

=300 4

F————=———

Remote refurn conducior

_______________ e |

|_ will Currer! source i

Figure 9. Generation of surface wave pattem at solid-liquid conductor interfaces.

Figure 10. Exploding wire circuit.
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solution of this problem has been to disperse large numbers
of very thin superconducting filaments in a normal metal
matrix and so decrease the effective current density over the
combined cross-section of normal and superconducting
metal. This practice also decreases the longitudinal stress in
the composite conductor, which is likely to contribute to the
improved performance.

In the first place the Ampere tension is felt by the super-
conducting filaments and from them it is transferred
through the metallic bonding to the normal metal matrix.
This mechanism should set up shear stress at the metal inter-
faces. When this stress exceeds certain limits, dissipative slip
could result and generate heat which may also contribute to
the quenching process. Frictional slip between parts of
superconductive magnet windings is known to cause partial
or complete quenching.

To further elucidate the shear action, let us take an exam-
ple where 10,000 superconducting wires of 0.0254 cm diam-
eter are embedded in a copper matrix to make up a compos-
ite conductor of 10 cm2 cross-sectional area. When each wire
carries 10 A, the total current is 500 KA, resulting in an aver-
age current density of 50 kA/cm?2. For this example Figure 8
gives a tensile stress of 1,250 kg/cm?2 and a total tension of
12,500 kg. This would set up a shear force of 15.7 kg/cm of
periphery of the superconducting wires. It does not seem
impossible that forces of this magnitude will break the bond
between the two metals, at least at some of the weaker spots.

C. Liquid Metal Conductors

The simple experiment of Figure 9 is capable of showing an
effect of longitudinal conductor forces in liquid mercury.
The conductor dimension and the current magnitude are
not critical for observing the effect. The experiment will
work equally well with direct and alternating current.

The author used 0.5 in2 copper bars set in a rectangular
groove in a plastic board, part of the groove forming the lig-
uid mercury trough. When about 300 A of current were
switched on, an irregular wave pattern became apparent on
the liquid mercury surface close to the interfaces with the
copper rod. The waves disappeared almost instantaneously
as the current was switched off. The

recognized, it remains difficult to see how longitudinal
forces can produce relative motion between some liquid
metal atoms and others, as demonstrated by the wave pat-
tern. Starting with the assumption that some atoms of the
liquid metal are propelled away from the solid interfaces, it
follows that others must return to take their places, or the
liquid level would continue to fall at the interfaces, which it
does not. For some of the atoms to return to the interfaces,
not all can experience the same repulsion. In any case we
should expect the tensile stress to be strongest in the center
of the conductor and weakest along the corners. This will be
better understood in conjunction with Figure 6(c). There the
center filament has eight close neighbors which all con-
tribute to the tension in the center. Each of the corner fila-
ments has only three close neighbors and should feel a cor-
respondingly lower tension. It would therefore not be unrea-
sonable for liquid to flow away from the center of the inter-
faces and return to the periphery of them.

We still have to explain why, in the experiment of Figure
9, the wave motion and flow is strongest at the interfaces
and disappears in the middle section of the liquid mercury
trough. The following qualitative argument deals with this
point. Each current-element is subject to two sets of forces.
One set is generated by the far-actions of Ampere’s force law.
The other is due to the hydrodynamic push from neighbor-
ing elements caused by contact actions taking place
throughout the liquid. In a solid conductor the contact
action is taken up by the crystal lattice and it cannot be
diminished by the conversion of some force into relative
acceleration of atoms or current-elements. However, liquid
conductor-elements may be accelerated relative to the body
of the fluid. This reduces the local contact action by the
product of mass times acceleration. The first liquid element
at the solid interface will be backed up less strongly by con-
tact action than it would be in a solid and accelerates into
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disturbances were strongest right at
the solid-liquid interfaces and they
died out within a few centimeters of
the interfaces.

Apart from a slight concave surface
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face tension of the liquid, the con-
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throughout. Transverse Lorentz forces
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Figure 12. (a), (b) Straight and semicircular aluminum
wires which are arc-connected to the discharge circuit.
(c) Collection of wire fragments produced by discharge

wave pattern were caused by longitu-
dinal Ampere forces.
Even when these facts have been
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the body of the liquid. This effect tends to zero halfway
between the two interfaces. It provides the explanation why
no wave motion can be seen some distance away from the
solid-liquid interfaces.

Another longitudinal force effect in a liquid metal con-
ductor was discovered by Northrup.12 His primary objective
was to demonstrate the pinch effect on a horizontal liquid
conductor. To make the effect more obvious he used a very
light metal, that is a sodium-potassium alloy which
remained liquid at room temperature and had about the
density of water. With quite small currents he was able to
produce deep and steep V-shaped depressions in a horizon-
tal conductor of rectangular section. Moreover, the pinch
was completely stable and it was of course attributed to the
transverse Lorentz force. But Northrup also observed that
liquid metal flowed rapidly uphill on the steep sides of the
stable depression. This meant of course that liquid had to
flow elsewhere to the bottom of the depression. The uphill
flow was parallel to the tangential surface current in the
metal and in every way compatible with the action of longi-
tudinal Ampere forces. These two experimental observations
suggest that longitudinal Ampere forces are likely to have a
major influence on magneto-hydrodynamic phenomena in
liquid metals.

EXPERIMENTAL DEMONSTRATION OF

THE ACTION OF AMPERE TENSION

A. Exploding Wire Circuits

The circuit used at MIT for the experimental demonstration
of current-induced tensile wire breaks is shown in Figure 10.
It is typical of exploding wire circuits except for the large
inductance and the relatively high voltage. The purpose of
the inductance was to prolong the discharge. Higher volt-
ages than normal had to be employed to overcome the
inductive impedance and strike arcs to the test wire. It has
been assumed that electric arcs in air have neither tensile nor
longitudinal compressive strength and no forces can be
transmitted through them to the exploding wire.

Most of the experiments were carried out with 1,000 uH
circuit inductance and 8 uF capacitance. This resulted in a
surge impedance of 11.2 Q and required at least 56 kV to
establish a current peak of 5 kA. Additional voltage was
being dropped across the switching arc and the two con-
necting arcs to the test wire.

The circuit parameters caused the discharge current to
oscillate at 1,830 Hz in the underdamped mode. When the
capacitor bank was charged to 60 kV, the current would
decay approximately exponentially, as shown in the oscillo-
gram of Figure 11(a), without breaking the wire. It has been
estimated that the 60 kV discharge was accompanied by a wire
temperature rise of several hundred degrees of centigrade,
which produced a thermal expansion of the order of 1%.

By subsequent increases of the discharge voltage in 2 kV
steps, a pulse current level was reached at which the wire
broke in one or more places. The hot fragments would fall to
the laboratory floor and be distorted on impact. When
repeating the experiment with a new wire and 2 kV addi-
tional voltage, the wire would break into a greater number of
pieces. Finally, at 70 kV, the wire would show clear signs of
melting which obliterated any evidence of tensile breaks.
The oscillogram of Figure 11(b) indicates discharge current
limiting and quenching due to the voltage drop along many

series-connected arcs in air.

B. Straight Wires

The most conclusive evidence for the existence of Ampeére
tension was obtained with straight wires mounted, as shown
in Figure 12(a). In this arrangement all the Lorentz forces act
perpendicularly to the wire axis and could not possibly pro-
duce tensile stress in the direction of the wiring axis. Yet the
1.19 mm diameter aluminum wire was shattered by brittle
fracture into many pieces, as shown in the photographs of
Figure 12. Electron micrographs, obtained with a scanning
electron microscope, showed surface melting on the fracture
faces to a depth of several micrometers, which is consistent
with electric arcing across the fracture gap.

Longitudinal Ampere forces explain the brittle tension-
breaks in the solid wire which was weakened by Joule heat-
ing. Can we think of any other mechanism which could
explain this surprising phenomenon? Three come to mind.
They are 1) separation due to pinch forces, and longitudinal
fracture caused either by 2) acoustic vibrations or 3) thermal
shock.

According to classical pinch force theory!2 the maximum
pressure in a circular conductor occurs on the axis and is
given by

Prax = i2/(ma?), dyn/cm?2 (32)

where i is the total conductor current in ab-amp and a is the
conductor radius in centimeter. The 99% pure aluminum
wires of 1.19 mm diameter were subjected to peak pulse cur-
rents of at most 6,000 A = 600 ab-amp. The maximum pres-
sure on the wire axis calculated from (32) comes to 33
kg/cm2. Given sufficient time, pressures of the magnitude
could extrude a hot wire. A careful micrometer survey of the
fractured wire pieces revealed no evidence of any decrease in
wire diameter. The extrusion forces existed only for a few
milliseconds. This was too short a time interval for produc-
ing plastic deformation, let alone wire breaks.

The pinch force must have oscillated at 3,660 Hz, which
is twice the discharge current frequency. This represents an
acoustic vibration which in the long run could possibly lead
to fatigue cracking and brittle fracture. However, the com-
pressive stress in the outer regions of the wire is much less
than along the axis and the vibrations could at most have
lasted for 40 cycles. Pinch force-induced vibrations are there-
fore an unlikely cause of the wire breaks. Furthermore, any
standing acoustic wave pattern should have resulted in wire
pieces of equal length, which was not the case.

Nasilowskil4 was the first to observe how tensile breaks
arrested a wire explosion. In one of his experiments he con-
nected a longitudinal vibration detector to the wire to be
exploded. He used a long dc current pulse which lasted for
about 20 ms. Longitudinal vibrations and arcing started 10
ms after discharge initiation. It seems likely that the cause of
the vibrations was tension relaxation of an initially taut wire
when the first break occurred.

The electric arcs struck in the MIT experiments were of
course accompanied by loud reports. Acoustic waves in air
are not known to break wires even when they are due to
lightning strokes. Hence, acoustic vibrations may be ruled
out as the cause of tensile wire fractures.

Finally we consider thermal shock. Natural cooling of
wires from red heat to ambient temperature, while the ends
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are free, is not known to have caused wires to break in ten-
sion. Convection and radiation cooling is a slow process and
takes seconds if not minutes to be completed. Significant
tensile stress could be set up by differential thermal expan-
sion. Pronounced skin-effect heating might achieve this.
However, the skin depth in aluminum at the ringing fre-
quency of 1,830 Hz is 2 mm and more at elevated tempera-
tures. This makes the current distribution over the 1.9 mm
diameter wire almost uniform, giving no cause for thermal
cracking.

The 100 cm long aluminum wire weighed three grams.
According to Figure 3 the maximum specific tension was at
least 7.0. For a peak current of 6,000 A this translates to a
tension of 2.57 kg and a corresponding tensile stress of 231
kg/cm2. 1t is equal to the ultimate strength of the material at
around 300°C. The impact strength of the metal will be less.
Therefore the first break in the wire could occur quite early
in the discharge cycle provided the fracture pieces manage to
separate in the available time. The repulsion between the
two wire portions is equal to the tension just before the
break. If the break occurs half way along the wire, it results
in an acceleration of 2,570/1.5 = 1,713 times that of gravity.
This produces a wire separation of 8 x 103 cm in 0.1 ms,
which seems adequate for a clean break. The mechanical iso-
lation between the pieces must lower the tension in either
portion and the current also decays with time. However, the
reduction in strength with increasing temperature appears to
permit further rupturing of the wire sections.

C. Wire Semicircle
The typical amperian mechanism of producing conductor
tension is not only active in straight wires but also in curved
sections. This will now be demonstrated with a wire semicir-
cle which is arc-connected to the remainder of the discharge
circuit. First we examine the mathematical situation in con-
junction with Figure 13. Any contribution to the semicircle
tension by the interaction of its elements with the remain-
der of the circuit will be ignored. This is likely to underesti-
mate the Ampere tension, but the error over the middle por-
tion of the wire will be quite small.

The semicircle AXB of Figure 13 is divided into z equal ele-

ments of arc, each subtending an angle of
A8 =n/z. (33)

The elements along XA are labelled 1, 2, - - -, m, - - -, x; and

those along XB are labelled 1, 2, - - -, n, - - -, (z - x). The dis-
tance between the two general elements m and n is denoted
by r,, ,, and the arc mXn subtends the angle 0,, ,. The angles
of the Ampere force law obey the relationships

a=f (34)
€ =0y, =20=2p. 35)
If R is the radius of the semicircle, then
dm = dn = (n/z)R (36)
and
hin=2R2 (1 -cos0,,,) . 37)

It can easily be shown that for any element combination on
the semicircle the angle function of (1) is negative and there-
fore all Ampere interactions to be considered are repulsions.
With (33)-(37) Ampere’s force law may be written

AF,, ,/i2 = -(n/2)? {2cos € - 3 cos? (¢/2)}/(2- 2 cose)  (38)

where ¢ = (n/z) (m + n - 1).

The tangential component of this repulsion produces ten-
sion in a wire which is again assumed to behave like an ideal
string with no bending strength. The transverse component
of (38) tends to retain the shape of the semicircle and possi-
bly accelerates the wire or its fragments away from the cen-
ter 0. Noting that cos a = cos(e/2), the elemental tension
contribution may therefore be written

ATy, nli2 = (AFy, /i%) COS(e/2) . 39)

Therefore the wire tension across the perpendicular plane
containing 0X is given by
X 2=X - .
T /it =3 5 (8F,,./i*) cos (g/2).

m=] m=1

(40)

For the semicircle of Figure 12(b) z comes to 660 elements.
Using this in the computer evaluation of (40) gave the
results plotted on Figure 14. They show that the internally
generated tension is relatively constant from end to end of
the semicircle. Comparing this with Figure 3 we see that the
tension in the semi-circle is expected to be of a similar mag-
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Figure 13. Construction for calculating Ampére tension in semicircle.
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Figure 14. Computed specific Ampére tension in semicircle.



nitude as in the straight wire. Hence the same current puls-
es which fractured the straight wire of Figure 12(a) should
also break the semicircle. Experiment fully confirmed this
prediction of the Ampeére force law.

CONCLUSION

With the particular circuit of Figure 2 it has been proved
that, under certain circumstances, the Ampeére force law will
predict tension in an electric conductor where it is not
expected from the Lorentz force law. The disagreement has
been put to the test by the experiment of Figure 12(a) and
thereby resolved in favor of Ampere’s law.

The fact that a component of the current-generated pon-
dero-motive force does act in the direction of the current
indicates that the metallic current-element is not merely a
moving conduction electron, as hitherto assumed. A longi-
tudinal force on the electron would accelerate or retard it
without exerting any appreciable reaction on the metallic
body. From this it may be concluded that the amperian cur-
rent-element involves at least one lattice or liquid metal ion
in addition to the conduction electron. The redefinition of
the amperian current-element in terms of an electron-ion
combination explains why the Ampeére force law was found
incapable of dealing with isolated charges in vacuum or
gasses. It leaves the Lorentz force unchallenged in such
important areas as particle accelerators, mass spectrometers,
and electron optics.

While the element size is unimportant for the evaluation
of interactions between separate circuits, it becomes the
dominant factor when computing the force distribution
around an isolated circuit. Ampere and his followers
believed the current-element to be infinitely divisible. This
created singularities in the integration of mechanical forces
around individual circuits and so precluded the quantitative
assessment of Ampeére tension by analytical methods. The
computer-aided finite current-element analysis outlined in
this paper furnishes the required solutions. It also revealed
that the amperian current-element must be of finite size or
the Ampere-Neumann electrodynamics becomes absurd.
Furthermore, it has been shown that the ultimate element
may be of the size of an atom or unit atomic cell.

The resolution of conductors into quite large macroscop-
ic current-elements gives approximate values of the Ampere
tension which agree reasonably well with measurements.
However, this agreement becomes unsatisfactory unless the
length-to-width ratio of the element is about one.
Macroscopic cubic current-elements have been found con-
venient and acceptable for computer analysis. Using cubic
elements it has been shown that, at constant current, the
Ampere tension will decrease with increasing conductor
cross-section. This effect has been called “longitudinal force
dilution.”

The Ampeére tension turns out to be quite small in air-
cooled electric power conductors carrying slowly varying ac
and dc currents. The much larger transient currents arising
accidentally from lightning strokes and short-circuits of lines
apply significant tensile stress to the copper and aluminum
conductors widely used in power distribution. The practical
consequences of Ampere tension are marked in pulse current
devices, as for example railguns, exploding wires, and fuses.
This tension is also expected to influence the design of large
superconducting magnets for fusion and MHD generators.
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